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Abstract 

According to the U.S. Department of Transportation, 36 states are experiencing 
shortages in rest areas, affecting the truck drivers’ ability to comply with work-
ing hour regulations. This issue points to the need of better utilizing the existing 
truck parking capacity, as expanding the infrastructure would require significant 
capital investment. In this study we presented a mixed integer programming 
model to the truck driver scheduling problem under the USA Hours-of-Service 
regulations which include the parking availability of the rest areas along a route 
as time-windows conditioned to the scheduling of a rest stop. We also include 
in our MIP model the USA weekly working hours constraint. This constraint is 
required for long trips, but is usually not treated as most papers limit the trip’s 
duration and required on-duty time. In order to alleviate scalability issues due 
to the model’s complexity, we also studied when can the optimality of a solution 
found by a simplified model be guaranteed. In addition, we proposed a formu-
lation for the vehicle shortest path and truck driver scheduling problem, which 
was modeled as a shortest path problem with resource constraints. 
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1 Introduction 

1.1 Background 

It was estimated that, in the year of 2013, trucks were responsible for carrying 
around 70% (in weight) of USA’s total freight shipments, without considering 
multimodal shipments that use trucks at some point [1]. It is expected that 
this value will still be as high as 66% by the year of 2040, despite substantial 
increases in multimodal and rail shipments [1]. This shows just how important 
trucks are to the USA economy. However, the increasing demand for trucks 
comes with a need for supporting infrastructure and legislation. 
A survey by the American Transport Research Institute (ATRI) determined 

the top issues in the trucking industry, among which are the Hours-of-Service 
(HOS) rules, Compliance, Safety and Accountability scores and Truck Parking 
[2]. These issues are strongly linked. The HOS rules caused an increase in the 
demand for parking as the drivers cannot exceed a certain number of hours driv-
ing. The increase in demand made the already existing truck parking shortage 
even more pronounced, making some drivers opt to park illegally, leading to a 
decrease in safety conditions. The lack of appropriate and convenient parking 
locations has been the cause of several safety issues over the past years as drivers 
might be forced to either drive while tired and increase the risk of accidents or 
park illegally in unsafe locations, which might also pose a safety hazard to them 
and other drivers. This issue is specially grave for long-haul truck drivers, who 
can stay weeks or months at a time on the road. For them it is crucial to have 
proper rest locations. 
Over the past years some states evaluated their truck parking availability 

and the impact of shortages in parking locations. The state of California is 
one of the states with the largest number of parking spaces. However, due to 
the large highway network and heavy truck traffic, these parking spaces are too 
sparse compared to the real necessities of the state. As of 2000, California had 
estimated the state’s total number of parking spaces as 8600, which is 38% of the 
estimated demand of 22700 parking spaces [3]. Similarly, a 2015 report by the 
Virginia Department of Transportation calculated a statewide deficit of nearly 
5000 parking spaces, which means that the state only satisfies around 60% of 
the calculated demand (12500 spaces) [4]. According to the U.S. Department of 
Transportation (USDOT), 36 states are experiencing shortages in rest areas, 
either public or private, which negatively affect truck parking [5]. During a 
survey, a large percentage of drivers reported difficulty in finding safe parking 
from 4PM to 5AM, while less than 10% reported difficulty from 5AM to 4PM 
[5]. However, another survey showed that less than 50% of truck stops operate 
overcapacity from 7PM to 5AM [5]. These results suggest that the existing 
parking capacity is not being fully utilized, possibly due to drivers not having 
enough information on where parking is available, and redistributing the parking 
demand in time and space can mitigate the truck parking shortage. 
Due to the size and importance of the trucking industry, the truck parking 

shortage has several negative consequences to society, such as the increase of 
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the following factors: 

Illegal Parking Surveys carried out by some states have identified several 
hundred illegal or unofficial parking locations such as freeway shoulders, freeway 
entrance and exit ramps, roadways accessing freeway ramps, local streets and 
commercial areas [5]. The use of these locations poses serious safety hazards 
to other motorists and truck drivers themselves and expose drivers to become 
targets of ill-intentioned people. 

Unsafe Driving With the driving time limits imposed by the HOS rules, 
a driver unable to find a suitable parking location may choose to either park 
illegally or drive illegally and tired. A study by the AAA Foundation for Traffic 
Safety found that 21% of all accidents in which a person was killed involved a 
drowsy driver [6]. Although the data used was not specific to trucks, it shows 
how dangerous drowsy driving can be. 

Environmental Impact The shortage of parking spaces forces drivers to 
drive around looking for parking and/or park at inappropriate locations. Both 
actions result in an increase in fuel consumption and emissions. While in some 
truck stops the drivers are able to plug in their vehicles to the grid and avoid 
idling, no illegal parking location will have this kind of service available, forcing 
the truck to idle for several hours. Idling is a large source of emissions, fuel 
expenditure and engine wear, so many states already have laws and incentives 
for idling reduction [7]. If the drivers often need to find parking in the local 
streets, they might impact the air quality and health of the nearby communities 
[8]. 

Cost As mentioned before, the shortage of parking can have a substantial im-
pact on fuel consumption, be it because of the time spent looking for parking 
or the time spent idling for lack of proper infrastructure. A study by the Uni-
versity of California, Davis has estimated idling time to be responsible for 8.7% 
of the total fuel consumption of long-haul trucks [9]. Fuel is responsible for a 
large share of the operational costs in the trucking industry, making the overall 
cost highly dependent on fuel costs [10]. Other than the fuel consumption there 
is still the cost related to vehicle maintenance (10% of total cost in 2015) [10], 
which can be increased by almost $2,000 a year due to idling [11]. Insurance 
premiums are another possibility of impacted costs as they can be affected by 
the number of accidents and robberies involving this kind of vehicle. 
These problems affect society as a whole and any improvement could be 

reflected as economic gains to multiple stakeholders. Reference [12] presents an 
assessment of the possible benefits of the implementation of Intelligent Truck 
Parking systems to reduce the parking shortage. This study focus on including 
parking availability as part of the shipment’s planning from the very beginning. 
We aim to help drivers avoid the parking shortage by planning the routes such 
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that their required stops are scheduled at locations and times where parking is 
likely to be available. 

1.2 Motivation 

The existent work on the truck driver scheduling problem (TDSP) and on the 
vehicle routing truck driver scheduling problem (VRTDSP) usually assumes 
that the drivers can park and rest at client locations, without any restriction 
on the time, and if rest areas are included they are considered to be always 
available. Some papers don’t even consider suitable parking locations at all, 
they assume that the vehicle can stop anywhere along the route. If the current 
context were of abundant truck parking this wouldn’t be an issue. Nevertheless, 
many drivers often face difficulty finding parking at certain regions and times 
of the day. Therefore, the parking availability of the parking locations should 
be considered in order for the generated schedules to be feasible in practice. 
In addition, current work usually assumes that trips are short enough, gen-

erally less than a week, so that they are not affected by certain restrictions. 
However, long-haul truck drivers can stay for several weeks on the road, so they 
do need to account for those regulations in their planning. Even if we consider 
that drivers might not have several weeks worth of work scheduled in advance, 
they should still be able to factor in the impact of their previous and current 
jobs when planning for the future ones. 
In this study we propose optimization models that integrate parking avail-

ability in the process of planning truck shipments. In particular, we focus on 
long-haul truck drivers that might need to stay several weeks on the road and 
need that their schedules comply with the regulations controlling longer trips. 

1.3 Structure of the Report 

The rest of this report is organized as follows. Section 2 presents a literature 
review of the research done on scheduling and routing methods considering HOS 
rules, and the HOS regulations that were used in most related papers. Section 
4 presents the description and model of the truck driver scheduling problem 
with parking availability. Section 5 presents the description and model of the 
truck driver routing and scheduling problem with parking availability. Section 
6 presents the conclusion. 

2 Literature Review 

2.1 HOS Regulations 

Most of the surveyed work was developed based on the regulations of the USA or 
European Union, with papers mentioning Canadian and Australian regulations. 
The different regulations have many similarities, so models developed for one 
may be very similar to the models for the others depending on which parts of 
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the regulation are taken into account. In this section we will introduce the USA 
and European regulations. 

2.1.1 USA 

The current USA HOS regulation [13, 14] differentiates between driving time, 
on-duty time and off-duty time. Driving time is all time spent operating a 
commercial motor vehicle, on-duty time is all the time from when the driver 
begin to work or is required to be ready for it until the time when the driver is 
relieved from work, and off-duty time is all the time when the driver is not on-
duty. The regulation restricts when the driver can and cannot drive according to 
the accumulated driving time or the elapsed time during a certain period. Each 
restriction can be reset by an off-duty period with a minimum duration specified 
in the regulation. The regulation uses 3 different types of off-duty periods, one 
with a minimum duration of 30 consecutive minutes, which we will refer to as a 
break, one with a minimum duration of 10 consecutive hours, which we will refer 
to as a rest or daily rest, and one with a minimum duration of 34 consecutive 
hours, which will be referred to as a weekly rest. Note that the longer off-duty 
periods can be used to reset the restrictions related to the shorter ones. The 
USA HOS regulation can be summarized as follows [13] : 

• Daily Driving Time Limit: A driver may drive at most 11 hours in between 
2 consecutive daily rests. 

• 14-Hour Elapsed Time Limit: A driver is not allowed to drive after 14 
consecutive hours have elapsed since the last daily rest ended. 

• Sleeper Berth Provision: Drivers using the sleeper berth provision must 
take at least 8 consecutive hours in the sleeper berth, plus a separate 2 
consecutive hours either in the sleeper berth, off duty, or any combination 
of the two. 

• Rest Breaks: A driver is not allowed to drive after 8 consecutive hours 
have elapsed since the last break ended. 

• 60/70-Hour Limit: A driver is not allowed to drive after having been 
on duty for 60/70 hour in any period of 7/8 consecutive days. The 7/8 
consecutive days period can be restarted by taking a weekly rest. 

The Sleeper Berth Provision, which allows the driver to split a daily rest in 2 
parts will not be considered in this study. 

2.1.2 European Regulations 

The European regulation has more restrictive time limits, but it allows for 
more flexibility a limited number of times each week. Similar to the American 
regulation, 3 types of off-duty periods are used to reset the different constraints. 
Most of the restrictions are applied to the driving time, but there are also some 
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regarding the working/on-duty time. The regulation defines a week as the time 
between Monday 00:00 and Sunday 24:00. Night time is defined as a period of 
at least 4 hours between 00:00 and 7:00. The regulation can be summarized as 
follows: 

Driving time [15, 16] 

• Breaks: Break periods are at least 45 minutes long, and can be split into 
an off-duty period of at least 15 minutes and another one of at least 30 
minutes. 

• Daily rest: The daily rest period shall be at least 11 hours long, with an 
exception of going down to 9 hours maximum three times a week. Daily 
rests can be split into 3 hours rest followed by 9 hour rest to make a total 
of 12 hours daily rest. 

• Weekly rest: The weekly rest consists of at least 45 continuous hours, 
which can be reduced every second week to 24 hours. Compensation 
arrangements apply for reduced weekly rest periods. Weekly rest is to be 
taken after six days of working. 

• Continuous Driving Limit: After driving for 4.5 hours a driver must stop 
for a break or daily rest. 

• Daily Driving Time Limit: A driver may drive at most 9 hours in between 
2 consecutive daily rests. It may be extended to 10 hours twice a week. 

• Weekly Driving Time Limit: The driving time may not exceed 56 hours 
in a single week, and it may not exceed 90 hours in 2 consecutive weeks. 

• Interval between Daily rests: The elapsed time between the end of a daily 
rest and the end of the following daily rest must not exceed 24 hours. 

• Interval between Weekly rests: The elapsed time between the end of a 
weekly rest and the start of the following weekly rest must not exceed 144 
hours. 

Working time [17, 18] 

• Maximum weekly working time: The maximum weekly working time is 60 
hours, but the average weekly working time over 4 months cannot exceed 
48 hours. 

• Continuous Work Limit: The driver cannot work for more than 6 hours 
without a break. 

• Night work: When working during night time, the maximum daily working 
time is 10 hours. 
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2.2 Scheduling Methods with HOS Rules 

The TDSP under HOS regulations has been studied both as a part of a vehicle 
routing problem and by itself. Different versions of the TDSP were considered, 
the main differences being: where the driver is allowed to rest, the HOS regula-
tion considered, the planning horizon, whether service time at client locations 
is considered, whether the travel times are time-dependent, and if the objec-
tive is to obtain a feasible, sub-optimal or optimal schedule. Reference [19] 
presented a column generation approach for the Practical Pickup and Delivery 
Problem, which include both routing and scheduling under specific constraints. 
The scheduling constraints included the old USDOT HOS rules on driving and 
working time and a maximum trip time of 6 days. It was assumed that the 
driver could stop at any point during the trip and a near-optimal schedule was 
calculated heuristically. [20] considered a TDSP where the vehicle is allowed to 
park anywhere, with a single time-window per location, and a simplified ver-
sion of USA’s HOS constraints (only the driving time between rests is limited 
and no service times are considered). A backward search method was used to 
find a feasible schedule. In [21], Goel also aimed to find a feasible schedule 
for a fixed route with a single time-window for each location, and presented a 
breadth-first search algorithm that considers the European HOS regulation for 
trips of up to 6 days. In [22], Goel and Kok presented a similar method, but 
now considering USA’s HOS regulation and multiple time-windows. A limit of 
70 hours of on-duty time per trip was assumed, eliminating the need to con-
sider the rules that regulate longer trips. Similarly to the methods mentioned 
before, these 2 breadth-first search algorithms do not restrict the allowed park-
ing locations. In [23], a mixed integer programming (MIP) formulation to the 
scheduling problem with multiple time-windows was presented, together with a 
dynamic programming approach to solve it more efficiently. This formulation 
considered the most common types of restrictions present in HOS regulations 
and can be configured to model or approximate different regulations. Different 
from the previous ones, this model considers that the driver may rest only at 
customer locations; rest areas can be modeled as customer locations with zero 
service time and an unbounded time-window. Similar MIP formulations were 
used in [24, 25], where the author restricts parking only to rest areas and in-
cludes an environmental impact factor dependent on the types of idling used in 
each stop. The infrastructure available at each rest area and in the truck define 
which types of idling can be used during the stops. The idling costs are esti-
mated based on CO2 emissions, equipment costs, and fuel and electricity prices. 
The model considers a maximum of 60 hours of on-duty time needed for the 
trip, a planning horizon of 7 days, and that each rest area has a single very-wide 
time-window. In [26], Kok et al. study the problem of optimizing the depar-
ture time and schedule for a fixed route with time-dependent travel times. An 
integer linear programming model based on the European Union regulation is 
proposed to optimize the schedule of a single day, with breaks restricted to cus-
tomer locations. The time-dependent travel times are assumed to be piece-wise 
linear and are modeled as sets of affine functions controlled by binary variables. 
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In addition, an integrated approach to solve the routing and scheduling problem 
using an insertion heuristic and the proposed scheduling algorithm is presented. 
The model can be extended to include multi-day trips and model rest areas as 
customer locations with zero service time and unbounded time-windows. 

2.3 Routing & Scheduling Methods with HOS Rules 

The TDSP often appears as part of the VRTDSP, such as in [27, 28, 29, 30, 31]. 
Due to the complexity of the combined problem, most authors use methods 
similar to the ones mentioned in the previous section to calculate the schedules 
and costs of routes generated heuristically. In [28], the author combines the 
scheduling model from [25] with an adaptive large neighborhood search to solve 
the routing and scheduling problem with idling options. In [29] the routing 
and scheduling of one-day trips with time-dependent travel times under the 
European regulation was treated. A dynamic programming heuristic was used to 
generate vehicle routes and an heuristic is used to optimize the vehicle departure 
time and schedule. Reference [27] presented the only exact method for the 
routing and scheduling problem. The problem was modeled as a shortest path 
problem with resource constraints over an extended auxiliary network and was 
solved using a branch and price algorithm. The scheduling part allowed the 
vehicle to stop at any point of the route, without considering specific parking 
locations. They considered the USA and European regulations and a planning 
horizon of 6 days. In [30], Gaddy applied a modified Clarke-Wright Savings 
Heuristic to a VRP in order to generate HOS compliant routes with certain 
restrictions to parking locations. The client locations are used as parking, but 
only part of the client locations are made available for this purpose. 
The TDSP and VRTDSP have seen a lot of progress in the past decade. 

However there are still areas that can be improved. The surveyed papers usually 
limit the planning horizon and/or the total trip length in order to avoid the rules 
that regulate longer trips. Many methods already restrict parking to suitable 
areas as customer sites or rest areas. However, the rest areas are considered 
to be always available and already on the route. The possibilities of needing 
to take a detour to find a suitable rest area or that the rest areas might be 
full/unavailable at certain times are not considered. 

3 Project Objective 

The objective of this study is to develop methods to improve the planning 
of long-haul truck shipments by integrating routing and scheduling algorithms 
with parking availability information, and by extending the considered planning 
horizon. When a company needs to plan their shipments they must allocate each 
order to a certain truck driver, decide the order in which the orders are gonna 
be fulfilled, the route/path to be taken and the driver’s schedule. This complete 
problem is the VRTDSP usually treated in the literature, the models for this 
problem generally consider that the shortest path in between any 2 customer 

7 



4 

locations is known. The routing part refers to choosing the clients and the order 
in which to visit them, not the actual path to be taken between client locations. 
In this study we do not consider the client allocation step. We refer to routing 
as deciding the actual path that the driver needs to take. Therefore, we will 
call it vehicle shortest path and truck driver scheduling problem (VSPTDSP) 
to avoid misunderstandings. 
We consider the problem of planning a trip for a single long-haul truck with 

a single client to be served, so a single origin and destination. The truck moves 
along a road network with known time-independent travel times. The driver’s 
schedule must comply with the USA HOS regulation. On the network, there is 
a set of suitable truck parking locations (TPL) which the driver can use to rest. 
These locations are not always available, but we assume that the time-windows 
in which they are available are known by the planner. 
This problem can be divided into 2 interdependent parts: the routing, which 

decides the path that the vehicle will use to get to the destination, and the 
scheduling (TDSP), that decides when to depart from the origin, in which TPLs 
to stop and for how long. 
The TDSP will be treated on section 4, assuming that we already have a 

pre-defined route and know which TPLs are located along that route. The 
integration with routing (VSPTDSP) will be treated on section 5. 

The Truck Driver Scheduling Problem with 
Parking Availability 

In this section we consider the problem of scheduling the rest stops for a long-
haul truck trip with a known route and a single client while taking into account 
the USA HOS regulations and estimated parking availability windows for all 
rest areas along the route. It is assumed that the rest areas are located on the 
route and require no detours to be accessed. The route has n + 1 nodes, 2 of 
which are the origin, node 0, and destination of the truck, node n. The other 
n−1 are rest areas located along the truck route. For each node i ∈ {0, 1, . . . , n}
the variable xi = (xi,a, xi,d) represents the arrival and departure times of the 
truck at that node. Each rest area i has Ti parking availability time-windows 
[tmin, tmax], where τ ∈ {1, 2, . . . , Ti} indicates the time-window’s index. Thei,τ i,τ 
time-windows restrict the arrival time at that node and are only in effect when 
the truck has to stop at that specific node, driving by it is not constrained by 
the time windows. For each location and time-window, a binary variable yi,τ is 
used to define if that specific time window is being used (yes:1, no:0). Driving 
by without stopping is represented by the variable yi,0 (drive by:1, stop:0). 
The travel time di,i+1 in between nodes is considered known and independent 
of time. The planning horizon is denoted by thor. The driver must reach its 
destination before the specified planning horizon. Figure 1 shows an example 
of a route with origin v0, 3 rest areas v1, v2 and v3 with 3 time-windows each, 
and a destination v4 also with 3 time-windows. 
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v0 v1 v2 v3 v4
d0,1 d1,2 d2,3 d3,4

[tmin
1,1 , tmax

1,1 ]

[tmin
1,2 , tmax

1,2 ]

[tmin
1,3 , tmax

1,3 ]

[tmin
2,1 , tmax

2,1 ]

[tmin
2,2 , tmax

2,2 ]

[tmin
2,3 , tmax

2,3 ]

[tmin
3,1 , tmax

3,1 ]

[tmin
3,2 , tmax

3,2 ]

[tmin
3,3 , tmax

3,3 ]

[tmin
4,1 , tmax

4,1 ]

[tmin
4,2 , tmax

4,2 ]

[tmin
4,3 , tmax

4,3 ]

Figure 1: Simple route with 5 locations (origin, 3 rest areas and destination) 
with 3 time-windows each. 

The schedule has to comply with the hours-of-service regulations. Here we 
will consider the USA regulations [14] without the sleeper berth provision. Any 
regulation that follows a similar structure can be implemented. R is defined as 
the set of different types of rest period described in the regulation. For each 
r ∈ R, tr defines the minimum duration of that type of rest period. C is the 
set of constraints imposed by the regulation. C1 ⊆ C is the set of constraints 
controlling the maximum elapsed time between off-duty periods. C2 ⊆ C is the 
set of constraints controlling the maximum accumulated driving time between 
off-duty periods. C3 ⊆ C is the set of constraints controlling the maximum 
accumulated on-duty time during a rolling time-window; the width of the time-
window for a constraint c ∈ C3 is represented by δc. In the USA regulation δc 

is 7 or 8 days, so these rolling window constraints will be referred to as weekly 
constraints. For each constraint c ∈ C, tc is the time limit imposed by the 
regulation and Rc ⊆ R is the set of rest types that can reset this counter. The 
binary variable zi,r indicates whether a rest of type r is taken at location i 
(yes:1, no:0). A truck cannot take more than 1 different type of rest at the same 
location and drivers cannot stop and wait at locations where they are not going 
to take any type of rest. The departure time from the origin must be within the 
interval [t0, tdep], t0 was set to 0. It is assumed that the driver has been off-duty 
for long enough before the departure time, so that all constraints’ counters were 
restarted before departure. Table 1 lists all the variables and parameters used 
in the model. 

4.1 Model for Short Trips 

This problem can be modeled as a mixed integer linear programming problem 
when the weekly constraints are not considered and as a quadratically con-
strained mixed integer programming problem when the weekly constraints are 
needed. This section presents the model used for short trips and focus in show-
ing how the parking availability is modeled by time-windows, before the weekly 
constraints are included in the next section. MIP models for the TDSP under 
HOS regulations were proposed previously in [23, 25], where they model rest 
areas as customer locations with unbounded time-windows and no service time. 
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Table 1: Variables 
Variables 

Symbol Description Unit 
xi,a Arrival time at location i hours (h) 
xi,d Departure time from location i hours (h) 
yi,τ Used time-window τ at location i? -

yi,0 Drove by location i? -

zi,r Rest of type r was taken at location i? -

λi,j,c Accumulated driving time generated by trip de-
parting location i at time xj,a, relative to rolling 
time-window constraint c 

hours (h) 

ψi,j,c Accumulated driving time generated by trips de-
parting locations 0 to i at time xj,a, relative to 
rolling time-window constraint c 

hours (h) 

αi,j,p,c Auxiliary variable for ramp constraint -

βi,j,q,c Auxiliary variable for ramp constraint -

Parameters 
Symbol Description Unit 
Ti Number of time-windows at location i time-window 
tmin 
i,τ Lower limit of τ -th time-window at location i hours (h) 

tmax 
i,τ Upper limit of τ -th time-window at location i hours (h) 

R Set of rest types defined in the regulation -
C Set of constraints defined in the regulation -

tc Time limit related to constraint c ∈ C hours (h) 
δc Rolling time-window’s width for constraint c ∈ C3 hours (h) 
Rc Set of rest types that can reset the counter tc from 

constraint c ∈ C 
-

tr Minimum duration for rest of type r ∈ R hours (h) 
di,i+1 Travel time from location i to location i + 1 hours (h) 
thor Planning time horizon hours (h) 
tdep Maximum departure time from the origin hours (h) 
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In this model we aim to include the parking availability of the rest areas in the 
model, so we cannot use unbounded time-windows anymore. However, unlike 
customer locations, the rest areas are not required stops, and if the driver is 
not stopping at a certain rest area there is no need to restrict the schedule with 
that rest area’s parking availability. Therefore, the time-windows must be con-
ditioned to the scheduling of off-duty periods at the rest areas. The formulation 
is as follows: 

Minimize Total travel time = xn,a − x1,d (1) 

xi,d + di,i+1 = xi+1,a ∀0 ≤ i ≤ n − 1 (2) X 
xi,a + trzi,r ≤ xi,d ∀1 ≤ i ≤ n (3) 

r∈R 

xi,d ≤ xi,a + (1 − y0,τ )thor ∀1 ≤ i ≤ n (4) 

TiX 
yi,0 + yi,τ = 1 ∀1 ≤ i ≤ n (5) 

τ =1 

TiX X 
yi,τ = zi,r ∀1 ≤ i ≤ n − 1 (6) 

τ =1 r∈R 

TiX 
min yi,τ ti,τ ≤ xi,a ∀1 ≤ i ≤ n (7) 

τ =1 

TiX 
max xi,a ≤ thor − [yi,τ (thor − t )] ∀1 ≤ i ≤ n (8)i,τ 

τ =1 

k−1X X 
xk,a − xi,d ≤ tc + thor zj,r ∀0 ≤ i < k ≤ n, c ∈ C1 (9) 

j=i+1 r∈Rc 

k−1 k−1X X X 
dj,j+1 ≤ tc + thor zj,r ∀0 ≤ i ≤ k ≤ n, c ∈ C2 (10) 

j=i j=i+1 r∈Rc X 
zi,r ≤ 1 ∀1 ≤ i ≤ n (11) 

r∈R 

xi ∈ [0, thor]
2 , yi ∈ {0, 1}Ti+1 , zi ∈ {0, 1}|R| ∀1 ≤ i ≤ n (12) 

x0,d ∈ [0, tdep], yn,0 = 0 (13) 

The objective function (1) is set to minimize the total trip duration. Con-
straint (2) guarantees that the arrival time equals the departure time of the 
previous location plus the required driving time. Constraint (3) states that the 
vehicle must not depart before the arrival time plus the minimum rest time de-
cided for that location. Constraint (4) controls what happens when the driver 
does not stop at a certain location. If the vehicle does not stop at location 
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i, the arrival time equals the departure time for that location. This constraint 
works with constraints (3,5,6) to assure this. Equality will hold when yi,0 equals 
1. When this happens, constraint (3) turns into xi,a ≤ xi,d and constraint (4) 
turns into xi,d ≤ xi,a, so we get xi,a = xi,d. If yi,0 equals 0, then constraint (4) 
is always true as thor is large. Constraint (5) states that at any location, either 
exactly 1 of the time windows is used or the vehicle does not stop. Constraint 
(6) states that, for any location, if a rest period is not taken at that location, the 
vehicle will not stop. Constraints (7) and (8) check the time-windows. Arrival 
must happen after the beginning and before the end of the chosen time window, 
and before the maximum time horizon considered in the problem. Constraint 
(9) checks that time elapsed since the last rest in Rc, c ∈ C1 is less than tc. 
(Multiplying by thor makes it true whenever a rest of type c is taken in between 
the nodes i and k). Constraint (10) checks if the accumulated driving time in 
between rest periods in Rc, c ∈ C2 is less than tc. Constraint (11) guarantees 
that only 1 rest period can be scheduled per location. Constraint (12) sets the 
variables’ domains, and (13) guarantees that the departure time from the origin 
is within the required period and that the vehicle will stop at the destination. 
This formulation considers a single customer, i.e. single required stop, but more 
required stops can be included by setting the variable yi,0 of the desired location 
to zero. This way the algorithm will force the driver to stop at that location. 

4.2 Model for Long Trips 

For short trips it is enough to consider the constraints of elapsed and accu-
mulated driving time between rest/break periods. However, when dealing with 
trips longer than 1 week, it is necessary to consider the regulations that limit the 
working hours over longer periods of time. Usually, complying with the short 
trip constraints does not guarantee compliance with the long trip ones. In the 
USA this regulation is defined as a rolling time-window of 7 or 8 days in which 
the driver can drive for at most 60 or 70 hours, respectively. This restriction 
can be described as follows: 

λi,c(t) = R(t−xi,d)−R(t−xi+1,a)−R(t−xi,d−δc)+R(t−xi+1,a−δc), ∀0 ≤ i ≤ n−1, c ∈ C3 

(14) 
n−1X 

λc(t) = λi(t), ∀c ∈ C3 (15) 
i=0 

λ(t)c ≤ tc, ∀t ∈ {x1,a, x2,a, . . . , xn,a}, c ∈ C3 (16) 

where R(t) is the unit ramp function. λi,c(t) represents the accumulated driving 
time generated by the displacement between location i and i + 1 at time t 
and λc(t) represents the accumulated driving time at time t, both relative to 
constraint c ∈ C3. It is sufficient to check these constraints at the arrival times 
xi, a. If the constraints are broken anywhere they will also be broken at the 
arrival time that follows. 
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4.2.1 MIP formulation for the ramp constraints 

The function λc(t), which represents the accumulated driving time over the 
last week at time t, needs to be evaluated at all arrival times xj,a, so each of 
its component functions λi,c(t) must also be evaluated at these times. λi,c(t) 
represents the accumulated driving time generated only by the displacement 
from location i to location i + 1. Constraints will be defined separately for each 
evaluated time according to the method for writing piecewise linear functions 
in MIP models described in [32]. The domain of the functions λi,c(t) will be 
divided in sections according to when the slope of the function changes and 
auxiliary variables are used to write t according to where it is located relative 
to these sections boundaries. For each function and required evaluation time 
λi(xj,a), the sets of variables {αi,j,p}, {βi,j,q}, and {λi,j } are defined as follows: 

αi,j,p,c ∈ {0, 1}, βi,j,q,c ∈ [0, 1] 

∀0 ≤ i < j ≤ n, 0 ≤ p ≤ 4, 1 ≤ q ≤ 5, c ∈ C3 (17) 

1 ≥ αi,j,0,c ≥ βi,j,1,c ≥ αi,j,1,c ≥ · · · ≥ αi,j,4,c ≥ βi,j,5,c 

∀0 ≤ i < j ≤ n, c ∈ C3 (18) 

αi,j,p,c < βi,j,p+1,c + 1 ∀0 ≤ i < j ≤ n, c ∈ C3 (19) 

xj,a =xi,dβi,j,1,c + di,i+1βi,j,2,c + (δc − di,i+1)βi,j,3,c 

+ di,i+1βi,j,4,c + thorβi,j,5,c ∀0 ≤ i < j ≤ n, c ∈ C3 (20) 

λi,j = di,i+1βi,j,2 − di,i+1βi,j,4 ∀0 ≤ i < j ≤ n (21) 

j−1X 
λi,j ≤ tc ∀1 ≤ j ≤ n, c ∈ C3 (22) 

i=0 

where the α’s and β’s are auxiliary variables used to model the piecewise def-
inition of λi,c(t). The α’s determine in which section of the function domain 
t is and the β’s define its exact position. λi,j = λi(xj,a), δc is the width of 
the time-window associated with constraint c in hours, tc is the time limit, in 
hours, associated to constraint c and di,i+1 is the travel time, in hours, between 
locations i and i + 1. Constraint (17) defines the domains of the α’s and β’s, 
(18) forces the β of any section to only be able to take non-zero values after the 
α of the previous section is set to 1, and the α of any section to only be able to 
be set to 1 after the β of that same section reaches 1. Constraint (19) says that 
the α of any section cannot take a non-zero value while the β of that section 
is still zero. Constraint (20) writes the time instant to be evaluated xj,a as a 
function of the α’s and β’s. Constraint (21) uses the α’s and β’s to calculate 
the λi(xj,a), and constraint (22) calculates and limits the accumulated driving 
time over the moving time-window relative to regulation c ∈ C3. This set of 
constraints substitutes constraints (14), (15) and (16), and guarantees that the 
accumulated driving time in any period of δc consecutive hours is kept below tc. 
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Due to (20) this problem would be a quadratically constrained problem. How-
ever, as that constraint is only defined for j > i, βi,j,1,c will always be 1 and 
can be defined as a constant, making the constraint linear. It is also possible 
to reduce the number of new variables by analyzing the possible values of the 
α’s and β’s at the required evaluation points. As (20) only considers j > i, the 
variables αi,j,p,c for p < 2 and βi,j,q,c for q < 3 will be always 1 and can be 
defined as constants. 

4.2.2 Reset for weekly constraint 

According to USA’s regulation, a driver may restart the 168 consecutive hours 
(7 days) period, by taking an off-duty time of 34 or more consecutive hours. 
When this type of rest is taken the system should be able to set the weekly 
accumulated driving time at the end of that rest to zero and start counting 
again from there. Two possible ways of modeling this behavior are by using 
quadratic constraints or indicator constraints controlled by the variables zi,r. 
For both formulations a set of variables {ψi,j } will be created to represent the 
accumulated driving time generated by all trips starting at locations 0 to i 
measured at time xj , a. The quadratic constraint formulation is the following: !X 

ψi,j = 1 − zi,r ψi−1,j + λi,j ∀1 ≤ i < j ≤ n, c ∈ C3 (23) 
r∈Rc 

ψ0,j = λ0,j , ∀1 ≤ i < j ≤ n (24) 

ψj−1,j ≤ tc, ∀1 ≤ j ≤ n, c ∈ C3 (25) 

where constraint (23) defines ψi,j and sets to zero all contributions from nodes 
before location i when a long rest is taken at location i. As mentioned before, 
this model assumes that the driver was off-duty for long enough before depar-
ture, so constraint (24) considers the initial accumulated driving time as being 
zero. These 3 constraints replace constraint (22). This formulation is non-linear 
and non-convex, which makes the problem a lot harder to solve. Furthermore, 
it cannot be used on CPLEX, so the experiments ran on CPLEX used indi-
cator constraints instead. The formulation using indicator constraints can be 
obtained by substituting constraint (23) by the following constraint: ⎧ P ⎨⎪ψi−1,j + λi,j if zi,r = 0 

ψi,j = r∈PRc ∀1 ≤ i < j ≤ n, c ∈ C3 (26)⎪ if = 1⎩λi,j zi,r 
r∈Rc 

It is reasonable to assume that |Rc| = 1 for c ∈ C3, so in this case the 
conditions would turn into zi,r = 1 and zi,r = 0. Otherwise, auxiliary variables, P 
equal to r∈Rc 

zi,r, can be created and used as conditions. 
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4.2.3 Remarks 

Including the rolling time-window constraints greatly increases the complexity 
of the problem, due to the large number of extra variables and constraints re-
quired. Adding the possibility of resetting the counter increases the complexity 
even further, making the problem non-linear and non-convex. Therefore, it is 
important to analyze the impact of each part of the model on the complexity, 
cost and feasibility in different scenarios. 

Weekly driving time constraint (without reset) 

Feasibility This part of the model only affects the feasibility of the solu-
tions when the total driving time of the trip exceeds the weekly limits imposed 
by the regulations, i.e. in the USA, any trip with a total driving time below 
60 hours is not affected by those constraints and feasible (legal) schedules can 
be found even if they are not included. However, it is important to note that, 
when these constraints are not present, simply limiting the total trip duration 
or planning horizon to one week is not enough to guarantee a feasible schedule. 
A constraint on the accumulated driving time over that week would still be 
necessary, but in this case it could be implemented through constraint (10). 

Cost When used for short trips, this part of the model will not have any 
impact on the solution cost as the weekly constraints are not active. In the case 
of long trips, the simple model does not generate HOS compliant solutions so 
its costs are not realistic and do not need to be considered for comparison. The 
cost of the solutions generated by the model with weekly constraint but without 
reset will be equal to or greater than the cost obtained when the constraint reset 
is included. 

Complexity The number of extra variables and constraints needed to im-
2plement this part of the model increases with n . Therefore, this model is not 

very scalable. For very long trips it might be necessary to find ways to reduce the 
number of variables and constraints, like grouping parking lots by region instead 
of considering them individually and removing unrealistic time-windows. 

Weekly constraint reset 

Feasibility The constraint reset does not affect the feasibility of the prob-
lem, it only improves the solution cost. Therefore, it is possible to omit this 
option to reduce problem complexity. The total trip duration might increase, 
but the schedules generated will still comply with the HOS regulations. 

Cost How much this reset can improve the cost depends on the regulation 
used. Usually, the sum of the minimum time a driver takes to reach the weekly 
driving limit and the minimum rest time needed to reset the weekly constraint 
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is less than a week (or less than the considered moving time-window width), so 
the difference between these values is the time saved by resetting the constraint. 
The more time is saved, the more advantageous it is to use the constraint reset. 
In the case of the USA, a driver takes at least 112.5h to drive 60h. When resting 
for 34h they can reset all constraints, which means that, on average, they can 
drive for 60h every 146.5h, instead of every 168h. This represents an increase 
of more than 14% on the average weekly driving time. 

Complexity The number of extra variables and constraints needed to im-
2plement this part of the model increases with n . In addition to that, some of 

the new constraints are non-linear and non-convex, aggravating the scalability 
issue. 

4.2.4 Trip Duration Bounds 

The schedule is affected by the truck stops’ locations, by their availability win-
dows and by the HOS regulation. In order to calculate lower bounds for this 
problem we can consider an ideal scenario where time-windows are not an issue, 
and only consider the HOS regulation. As they are dependent only on the regu-
lation being used, it is possible to calculate these bounds offline, and use them as 
a way to evaluate the solutions obtained during the schedule optimization. The 
lower bounds depend on the used regulation. Here we will consider the same 
structure of the USA regulation. We calculated the lower bounds by optimizing 
the total trip duration for trip lengths that do not use daily rests, then used 
this as a building block to optimize trips that do not need weekly rests, then for 
trips of any length. The parameters used are defined as follows: 

tb minimum break duration; 

tr minimum rest duration; 

tw minimum weekly rest duration; 

teb limit for elapsed time between breaks; 

tar limit for accumulated driving time between rests; 

taw limit for accumulated driving time between weekly rests; 

δw moving time-window width; 

� arbitrarily small positive constant. 

First we calculate the minimum trip duration for a trip with less than a 
day’s worth of driving time, fd(·). � � 

x − � 
fd(x) = x + tb · , 0 ≤ x ≤ tar (27)

teb 
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where x represents the trip length in hours, i.e. the total driving time of the 
trip. As x was limited to less than the daily driving limit tar, we just need to 
calculate the number of breaks that will be necessary during the day. The � is 
used to avoid including a break when the driving time is exactly on the limit. 
Then we can use fd(·) to describe the trip duration for trips with less than 

a week’s worth of driving time, fw(·), as follows: ( 
1 if x > 0 

u(x) = (28)
0 if x = 0 

nX 
y ∈ Rn+1 gw(y) =fd(y0) + [tru(yi) + fd(yi)] , , 0 ≤ kyk∞ ≤ tar (29) 

1 � ��� x − � 
A(x) = y ∈ Rn+1 0 ≤ kyk∞ ≤ tar , kyk1 = x, n = (30)

teb 

fw(x) = min gw(y), 0 ≤ x ≤ taw (31) 
y∈A(x) 

The ’shorter than a week’ trips described here can be divided in multiple ’less 
than a day’ trips separated by daily rests. Function gw(·) optimizes these smaller 
sections using fd(·) and adds a daily rest for each non-zero section, calculating 
the minimum trip duration given a vector y = (y0, y1, . . . , yn) composed of the 
n + 1 section lengths yi. Equation (31) optimizes the trip duration over all valid 
combinations of section lengths, with up to n daily rests. Equation (30) defines 
the valid section length vectors, choosing n such that the optimization considers 
enough daily rests to account for the case of taking a daily rest every time a 
break is needed. 
The same approach is used to calculate the trip duration for longer trips, 

but now we want to consider 2 different scenarios: being able to reset the weekly 
constraint with a weekly rest, and using only the rolling time-window constraint. 
The trip duration for a trip with more than a week’s worth of driving time when 
weekly rests are allowed, fl1(·), is calculated as follows: 

nX 
y ∈ Rn+1 gl1(y) =fw(y0) + [twu(yi) + fw(yi)] , , 0 ≤ kyk∞ ≤ taw (32) 

1 � ��� x − � 
B(x) = y ∈ Rn+1 0 ≤ kyk∞ ≤ taw , kyk1 = x, n = (33)

L 

fl1(x) = min gl1(y), 0 ≤ x (34) 
y∈B(x) 

where teb ≤ L ≤ taw should be chosen in a way that creates a vector long enough 
to test the different possibilities of moving driving hours between weeks to avoid 
breaks and daily rests when possible. This value affects the maximum number of 
weekly rests that the problem will consider in the optimization. Taking L = teb 

certainly works as it is the maximum driving time allowed without any kind 
of rest, so , in the case of USA regulations, the optimization would consider 
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even the case of taking a weekly rest every 8h of driving. For long trips this 
resolution might be excessive and will unnecessarily slow down the calculations 
due to the large number of possible vectors. An optimal schedule will have a 
high driving time to trip duration ratio, so we suggest taking L as the length 
of the trip when the intermediate weekly cycles (the ones that are followed by 

x 
a weekly rest) would be the most efficient, i.e. L = arg max . 

fw(x) + tawx≤taw 

The trip duration for a trip with more than a week’s worth of driving time 
when weekly rests are not allowed, fl2(·), is calculated as follows: �� 

x − � 
fl2(x) =δw · + fw(mod(x − �, taw)) (35)

taw 

where mod(·, ·) is the modulo operator, which returns the remainder of the 
division between its arguments. In this case, as we know during any period of 
δw at most taw driving hours can be schedule, every chunk of taw driving hours 
will generate a trip duration of δw. Therefore, we just need to optimize the the 
driving time that remains after taking these chunks out. 
We can then calculate the minimum trip duration for when the driver is 

allowed both behaviors by combining fl1(·) and fl2(·) : ⎧⎪⎨ ⎪⎩ 
fl1(x1), if x2 = 0 

fl1,l2(x1, x2) = fl2(x2), if x1 = 0, x2 > 0 (36) 

fl1(x1) + tw + fl2(x2), if x1, x2 > 0 

min fl1,l2(x1, x2), x1, x2 ≥ 0fl(x) = (37) 
x1+x2=x 

In order to force the usage of the rolling time-window we can restrict equation 
(37) to using x2 greater than taw. 

4.2.5 Simplified Model for Long Trips 

Due to the scalability issues caused by the rolling time-window constraint, we 
will also study a simplified way to implement the weekly constraint with the 
reset. Some authors model the weekly constraint as an accumulated driving 
time constraint between 2 consecutive weekly rests. This formulation does not 
consider all possible solutions generated by the rolling time-window constraint, 
but it does guarantee a valid schedule. This model would be almost the same 
as the one presented in section 4.1, only adding the accumulated driving time 
between weekly rests constraint to the set of constraints C2. Therefore, all the 
extra variables and constraints presented in section 4.2 would not be needed 
anymore. 
In the USA regulation, under ideal conditions, resetting the weekly con-

straint is more efficient than decreasing the average daily driving time and 
using the rolling time-window. The rolling time-window constraint is only used 
when it is convenient for the driver to be on-duty for more than 60 hours over 
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Figure 2: Minimum trip duration for a trip with a total of 215h of driving time 
according to how much of the trip allows weekly rests to be taken. 

a time interval longer than 168 hours without taking a weekly rest. This might 
be caused by inconvenient time-windows or long work times needed during this 
interval. Therefore, it is possible that a solution found by the simplified weekly 
constraint will have a lower cost than the lower bound for solutions that require 
the usage of the rolling time-window at some point during the trip. 
We can use the model in section 4.2.4 to estimate the lower bound for the 

duration of trips varying how much of the driving time allows the use of weekly 
rest and how much does not. For example, a trip with 215h of total driving 
time could have 115h of driving using weekly rests and 100h not using them, 
and we would need to consider a weekly rest in between those 2 parts of the trip 
to reset all constraints. Each part of this trip would behave like the respective 
case described by equations (34) and (35). An example of how the minimum 
trip duration varies with the length of these parts is shown on Figure 2. It can 
be seen that the shortest trips happen when most of the time is allocated to 
using weekly rests. The rolling time window option is only used on the points 
of the plot to the left of the red line. The red line marks when more than 60h 
of driving time do not allow the use of rests, therefore requiring the use of the 
rolling time window. In order to find the lower bound of schedules that actually 
use the rolling time window we can calculate the minimum of everything to the 
left of the red line. We can guarantee optimality for any schedule calculated 
using the simplified weekly constraint for which the trip duration is lower than 
this bound. Section 4.3.2 presents experiments simulating long-haul trips, and 
we can see how this lower bound compares with the experimental results. 
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4.3 Experiments 

4.3.1 Parking Availability Impact 

This section describes the setup of the experiment used to test the impact of 
considering availability windows for every parking lot along a truck route. A 
route, approximately 1960Km long, going from San Diego to Seattle was chosen. 
Data from the FHWA was used to find rest areas and truck stops located close 
to the route and position them along the route. Figure 3 shows the parking lots 
along the route (gray circles), as well as the chosen parking locations for the base 
case (triangles and squares) and for one of the tested scenarios (crosses). 94 rest 
stops and rest areas were considered. This trip takes less than a week, so the 
rolling time-window constraints are not considered. In order to simulate parking 
availability, time windows with start and end times normally distributed were 
considered for each rest area/truck stop. The distribution used for the start 
times had mean 5 hours (5am) and standard deviation of 0.5 hours, and the 
one for the end time had mean 20 hours (8pm) and standard deviation of 1 
hour. It was considered that the truck must depart from the origin during 
the first 24 hours and that the final destination has daily time-windows from 
8am to 6pm. For this experiment multiple scenarios with different parking 
availability time-windows were generated. The problem was solved using the 
solver CPLEX, both for the base case without the time-windows and for each 
scenario using the parking availability constraints. The number of scenarios used 
(N), average trip duration (avg trip), average arrival (avg arr) and departure 
times (avg dep) and the feasibility rate (feas) of each model are shown on Table 
2. In this experiment the base case found a solution that scheduled a stop 
at a time when the chosen parking lot is very likely to be full, which caused 
the feasibility rate to drop to zero. The feasibility rate for this experiment is 
highly dependent on the probability distribution used to define the availability 
windows. In this experiment, the distribution parameters were chosen so that 
the times when the time-windows are closed resemble the times when truck 
drivers report difficulty in finding parking more often. The time-windows do 
not reflect the real availability of the truck stops in the used route, so these 
results can only be used as an example of how easy it is for a schedule to 
be almost always infeasible if the parking availability is not considered during 
planning. On the other hand, considering parking availability did not affect 
the total trip duration in this experiment, possibly due to the large number of 
parking lots to choose from. 

4.3.2 Long-Haul Trips 

Due to the scalability issues mentioned before, this experiment did not consider 
a real route and the surrounding truck stops. A route was generated with equally 
spaced truck stops, the travel time between two adjacent truck stops was set 
to 1 hour. Like in the previous experiment, normal distributions were used to 
define the time-windows for each truck stop. The distribution used for the start 
times had mean 4 hours (4am) and standard deviation of 1 hour, and the one 
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Figure 3: Route used on short trip experiment. San Diego to Seattle through 
the I-5 freeway. The triangles (base model) and +s (new model) represent truck 
stops chosen for daily rests, and the square (base model) and × (new model) 
represent the ones chosen for short breaks. The gray circles represent the truck 
stops near the chosen route. 
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Table 2: Comparison between schedules obtained with and without parking 
availability windows. 
N Parking avg trip (h) feas avg arr (h) avg dep (h) 
30 No 46.67 0% 56 9.23 
30 Yes 46.67 100% 57.93 11.26 
1000 No 46.67 0% 56 9.23 
1000 Yes 46.67 100% 57.98 11.30 

for the end time had mean 21 hours (9pm) and standard deviation of 2 hours. 
It was considered that the truck must depart from the origin during the first 24 
hours and that the final destination has daily time-windows from 8am to 6pm. 
This experiment tested the performance of 3 different methods to generate 

long-haul schedules. The USA HOS regulation defines a rolling time-window 
constraint for long-haul drivers; they cannot drive after being on-duty for more 
than 60/70 hours during 7/8 consecutive days, and can take a rest of at least 34 
consecutive hours in order to reset this counter. We used the regulation for 60h 
on-duty during the past 7 days. We considered 3 different ways of generating 
HOS compliant schedules. First, we can implement the rolling time windows as 
shown on section 4.2, without including the possibility of resetting the counter; 
this is referred to as the ’No Reset’ method. Second, for the ’Reset’ method, the 
reset for the rolling time-window was included as shown on section 4.2.2. Third, 
we used the simplified weekly constraint described in section 4.2.5, referred to 
as ’Simplified Const’. 

4.3.3 Performance 

It can be seen on Figure 4 that when the reset option is not implemented the 
total trip duration gets automatically increased to more than 1 week when the 
needed driving time is larger than the weekly limit. When the reset is imple-
mented the trip duration only gets increased by the duration of the weekly rest 
needed to reset the counter. This is the reason why the ’Simplified Const’ is 
likely to find an optimal schedule for the USA regulations. In general, it is more 
efficient for the drivers to take the 34h rest and reset the counter than to reduce 
their average daily driving hours to match the rolling time-window. However, 
this is not necessarily true for every regulation. Figure 4 also shows, as ’TW 
Bound’, the theoretical lower bound for solutions that need the rolling time-
window to be found. We can see that, on average, the results for ’Simplified 
Const’ are significantly lower than this bound. Therefore we can prove opti-
mality for most of the results found by this method without needing to use the 
complete model. For schedules that exceed this bound we can only show what is 
the maximum possible improvement to the solution if the complete model were 
used, and use this information to decide whether to accept the current solution 
or try to improve it by using the complete model. The presented model only 
treated the case with a single client and the parking availability windows are 
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Figure 4: Average trip duration of schedules calculated by the 3 methods with 
varying total driving time, and the theoretical lower bound of solutions that 
need the rolling time to be found. The vertical dotted line represents when the 
total driving time reaches the weekly limit (60h) and the horizontal dotted line 
represents when the trip duration reaches 1 week (168h). 

fairly wide, so they do not affect the scheduling very much. However, if more 
clients are added to the route, with more restrictive time-windows, the solution 
costs obtained by using weekly rests should lose some of their advantages. 

4.3.4 Complexity 

Figure 5 shows how the number of locations used and the total driving time affect 
the problem’s complexity. It can be seen on Figure 5a that the solve time for 
all 3 methods are almost the same when the number of locations used is smaller 
than 60. At 60 locations the total driving time reaches the weekly driving limit 
(60h) and the weekly constraints start being needed. The solve time for the 
’Reset’ method rises sharply after that threshold. The solve time for the ’No 
Reset’ model also increases exponentially, but at a slower rate. Figures 5b and 
5c show that those 2 methods have a similar number of constraints and variables, 
however some of the constraints used to reset the weekly driving time counter are 
indicator constraints; this is likely the cause of the significantly longer solve time 
for the ’Reset’ model. Unexpectedly, even though the ’Simplified Const’ method 
has a notably smaller number of variables and constraints, the variation of its 
solve time was very inconsistent and did not show a significant improvement 
compared to the ’No Reset’ method. Nevertheless, its solve time is still shorter 
than the ’Reset’ method while finding solutions of same or similar costs, which 
are significantly better than the ’No Reset’ solutions. 
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Figure 5: Results showing how the complexity of the 3 methods vary with the 
number of locations and driving time. 
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4.4 Extensions 

4.4.1 Multiple Clients 

If the trip has more than 1 customer location to visit, it is necessary to add a 
required stop at the customer location and some work time might also be needed 
for loading/unloading. The original model doesn’t consider stops for work pur-
poses so some modifications are needed to implement this. All required stops 
will be assigned a parameter wi representing the work time required for that 
location. Let N be the set of required stop locations. The following constraints 
need to be included in the problem: 

xi,a + wi = xi,d ∀i ∈ N (38) X 
zi,r = 0 ∀i ∈ N (39) 

r∈R 

yi,0 = 0, ∀i ∈ N (40) 

k−1 k−1 k−1X X X X 
dj,j+1 + wj ≤ tc + thor zj,r ∀0 ≤ i ≤ k ≤ n, c ∈ C3 (41) 

j=i j=i j=i+1 r∈Rc 

wi = 0, ∀i ∈/ N (42) 

Constraints (38) to (40) substitute constraints (3) and (6) for the locations 
with required stops (i ∈ N), so a i ∈/ N should be included in the original 
constraints to avoid conflicts. Note that all zi,r’s are set to zero due to the 
assumption that drivers cannot rest at customer locations. As the set of con-
straints C3 measures the on-duty time, not the driving time, constraint (42) 
needs to be added to the problem when work time is considered. 

5 The Vehicle Shortest Path and Truck Driver 
Scheduling Problem with Parking Availability 

5.1 Problem Description 

The problem consists of planning the trip of a single truck from an origin to 
a single destination, while complying with the USA HOS regulations and only 
scheduling off-duty time at TPLs which are expected to have available parking 
at the time of arrival. The context is the same as for the TDSP presented pre-
viously, but now the route taken is not given and the TPLs cannot be reached 
without deviating from the main road. The travel times are given and still con-
sidered time-independent, the parking availability of the TPLs are also assumed 
known. We modeled this problem as a shortest path problem with resource con-
straints (SPPRC)[33], where the time, trip duration or cost, and the counters 
for the different HOS regulations will be treated as resources. The simplified 
road network is defined as an acyclic directed graph G=(V,A), where V is the 
set of nodes of the graph and A is the set of arcs. The nodes represent locations 
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of interest in the road network, as TPLs, client locations, intersections, and 
road branching spots. The arcs represent road segments. Let di,j be constants 
associated with each arc (i, j) representing the travel time between locations i 
and j. Let v0 denote the origin node and vn the destination node, so every path 
must start at v0 and end at vn. To avoid an overly complex network, the graph 
is built considering only the main routes the driver can take for that specific 
trip and the TPLs around them. TPLs are included in the network as nodes 
branching out from one of the main paths, that merge back into the path at 
a downstream node. The shortest paths from the main road to the TPLs are 
assumed known. In case the shortest path requires the truck to re-enter the 
road at a point upstream of the branching out point, the difference between the 
real merge point and the wanted merge point can be added to the cost of the 
edge connecting the truck stop to the main path. Figure 6 shows an example 
network, the nodes with a number index are road nodes and the ones with a 
letter index are TPLs. The edges connected to TPLs were represented as dashed 
arrows and the main paths as continuous arrows. 

v0

v7

v1 v2 v3 v4 v5 v6

v8

va vb

vc

1
Figure 6: Example of simplified road network. 

In order to treat the different possible actions a driver can take at a TPL, 
an extended network G’=(V’,A’) is defined, where each node vi representing a 
TPL is substituted by the sub-network in Figure 7. 

in b r wNode v represents the moment of arrival at the parking lot, vi , v and vi i i 
represent the type of off-duty period the driver chose to take (break, daily rest 

inand weekly rest, respectively). The arcs going from v to each one of these nodes i 
have as cost the minimum time required by each type of off-duty period, i.e. tb, 

outtr and tw for break, daily rest and weekly rest, respectively. v represents thei 
moment when the driver is ready to leave the parking lot and the arcs leading to 
it have a variable cost δi,∗,k, instead of the constant dij , representing the extra 
time the driver spent in the parking lot beyond the minimum time required. 
The variables xi,k and ai,k are associated with each node vi ∈ V 0 and partial 

solution k. xi,k represents the time at which node vi is visited in k. ai,k indicates 
if node vi is visited in k. 

inFor each truck stop entrance node v and for the destination vn a set ofi 
time-windows is defined. For the rest areas they represent the times when the 
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vini vri

vbi

vwi

vouti

tr δi,r,k

tb δi,b,k

tw δi,w,k

Figure 7: Sub-network used to expand each truck stop node. 

parking lot is not full, and for the destination they represent the times when 
the customer can receive the delivery. 
As in the TDSP model, Ti time-windows are defined separately for each node 

i, restricting the allowed arrival time for vehicles that intend to stop/rest at 
that location. Each time-window is defined by a tuple (tmin, tmax) representing i,τ i,τ 
the minimum and maximum arrival times allowed by that time-window, where 
τ ≤ Ti is the index of that window. 
As the driver schedule must comply with the HOS regulations, each regula-

tion constraint is modeled by a different resource that must be kept below the 
limits described in the regulation throughout the whole path. For each node i 
and path k, the resources considered are: 

• time when node was visited (xi,k) 

• elapsed time since trip start (ηs )i,k 

• elapsed time since last break (ηb )i,k 

• elapsed time since last rest (ηr )i,k 

• elapsed time since last weekly rest (ηw )i,k 

• accumulated driving time since last rest (ψr )i,k 

• accumulated driving time since last weekly rest (ψw )i,k 

• accumulated driving time over the last 7 days (ψm (t))i,k 

For each arc (vi, vj ) and partial solution k, a variable bi,j,k indicates if 
arc (vi, vj ) is visited in k. A resource extension function (REF) fi,j (·) de-
fines how each resource is updated when arc (vi, vj ) is visited. fi,j (·) can 
be defined as 4 different functions depending on what kind of activity the 
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Table 3: Resource Extension Functions 
Resource fd f b fr fw 

xjk = xik + dij xik + dij xik + dij xik + dij 

ηs = jk ηs 
ik + dij ηs 

ik + dij ηs 
ik + dij ηs 

ik + dij 

ηb = jk ηb 
ik + dij 0 0 0 

ηr = jk ηr 
ik + dij ηr 

ik + dij 0 0 

ηw = jk ηw 
ik + dij ηw 

ik + dij ηw 
ik + dij 0 

ψr = jk ψr 
ik + dij ψr 

ik 0 0 

ψw = jk ψw 
ik + dij ψw 

ik ψw 
ik 0 

ψm (t) = jk ψm(t) +ik 
g(xik, dij , δc, t) 

ψm(t)ik ψm(t)ik 0 

arc represents (driving, break, daily rest, weekly rest). For arcs connected to 
break, daily rest and weekly rest nodes, the REF will be f b , fr and fw , re-
spectively. The other arcs represent when the driver is driving and use fd to 
update the resources. Table 3 shows the expressions for each REF. The func-
tion g(., t), used to calculate ψm (t), represents the accumulated driving timei,k 
generated by a single arc in the network, it can be defined as g(xik, dij , δc, t) = 
R(t − xik) − R(t − xik − dij ) − R(t − xi,d − δc) + R(t − xik − dij − δc), where 
R(t) is the unit ramp function. Figure 8 shows which REF is used in each arc 
of an example network with origin va, destination vd and an already expanded 
truck stop node vi. 

fb fb

fr fr

fw fw
fd

fd

fd

fd

fd

va vb vc vd

vini vouti

vbi

vri

vwi

1Figure 8: Example network with REFs used in each node. 

The evolution of resource ψm (t) is dependent on the previous decisions oni,k 
that path, so a function is used in order to consider all information necessary. 
This function’s value must be less or equal than 60 hours everywhere for the 
solution to be feasible. This function is non-decreasing on driving periods and 
non-increasing on resting periods, so it suffices to verify that ψm (xi,k) ≤ 60 fori,k 
every visited node representing a truck stop entrance. Feasibility windows are 
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Table 4: Resource Feasibility Windows 
Resource Window S 
xjk 

min max[w , w ]jτ jτ 
τ 

ηs 
jk -

ηb 
jk [0, teb] 

ηr 
jk [0, ter] 

ψr 
jk [0, tac] 

ψw 
jk [0, taw] 

defined for each resource according to the HOS regulations. We will consider 
the simplified long trip model from section 4.2.5, which will give us the resource 
windows shown on Table 4, where the parameters are the same ones defined in 
section 4.2.4. tb, tr and tw are the minimum durations of breaks, daily rests and 
weekly rests, respectively. teb is the limit for elapsed time between breaks , tar 

is the limit for accumulated driving time between daily rests , and taw is the 
limit for accumulated driving time between weekly rests. Note that resources 
ηw and ψm (t) and their REFs were defined as they can be needed for certaini,k i,k 
regulations, but were not included in the table because they are not used in the 
simplified long trip model. 
A feasible solution is composed by a path (nodes and arcs) which is feasible 

according to the network structure and structural constraints, and a schedule 
(resource vectors) which is resource feasible according to the time-windows and 
HOS constraints. Let Θi be the vector of resources for a node i, a path π = 
(v0, v1, . . . , vp) is resource feasible if there exists a feasible resource vector Θi for 
all nodes i = 0, . . . , p − 1, such that fvi,vi+1 (Θi) = Θi+1 for all i = 0, . . . , p − 1. 
The path must obey the network structure, so for all vi ∈ π\{vp} it is required 
that (vi, vi+1) ∈ A0 . The optimal solution will be the one with minimum cost 
among all feasible solutions. 

5.2 Proposed Approach 

A dynamic programming algorithm using a label correcting method will be used 
to solve this problem. Labels are defined for partial solutions ending at each 
node and dominance rules are used to decide which partial solutions are kept 
and used to continue the search. The resources used to define the labels of the 
model are xi,k, ηs 

i,k, and ψw The full version of the regulationi,k, η
b 

i,k, ψ
r 

i,k, η
r 

i,k. 
would need to use the resource ψm (t) instead of ψw The next section definesi,k i,k. 
the dominance rules used. The rules include all resources, but only the ones 
needed by the labels of the chosen HOS regulation model should be considered. 
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Table 5: Dominance rules 
Resource general case bv nodes ∗ 

rv nodes ∗ 
wv nodes ∗ 

xjk 
0= x − γjk 

0= x − γjk 
0= x − γjk 

0= x − γjk 

ηs 
jk < ηs0 − γjk < ηs0 − γjk < ηs0 − γjk < ηs0 − γjk 

ηb 
jk ≤ ηb0 − γjk ≤ ηb0 jk ≤ ηb0 jk ≤ ηb0 jk 

ηr 
jk ≤ ηr0 − γjk ≤ ηr0 − γjk ≤ ηr0 jk ≤ ηr0 jk 

ηw 
jk ≤ ηw0 − γjk ≤ ηw0 − γjk ≤ ηw0 − γjk ≤ ηw0 jk 

ψr 
jk ≤ ψr0 − γjk ≤ ψr0 − γjk ≤ ψr0 

jk ≤ ψr0 
jk 

ψw 
jk ≤ ψw0 − γjk ≤ ψw0 − γjk ≤ ψw0 − γjk ≤ ψw0 

jk 

ψm 
jk(xjk) ≤ ψm0 0(x )−γjk jk ≤ ψm0 0(x )−γjk jk ≤ ψm0 0(x )−γjk jk ≤ ψm0 0(x )jk jk

5.2.1 Dominance Rules 

In order to reduce the search space, dominance rules were defined to remove 
from the search partial solutions that cannot generate better results than other 
partial solutions already included in the search space. These rules are defined 
based on the resource vector, also used as the label, Θi, where i is the last 
location visited by the partial solution being analyzed. 
Let Θi and Θ0 denote the labels for two different partial solutions ending ati 

0the same node i and let γ = xi − xi ≥ 0. The dominance rules are described on 
Table 5. We can say that Θi dominates Θ0 if they satisfy all the inequalities ofi 
a column of Table 5. 
For the general case, when these conditions are true, solutions generated 

from Θi will not break any HOS constraint that Θ0 would not break. However, i 
0it is possible that due to the difference between xi and xi, some path extensions 

generated from Θ0 i might not be feasible with Θi due to time-window constraints. 
Therefore we intend to check for dominance only on nodes representing off-duty 

b rperiods (v , v and vw), as they can extend their off-duty period in order to 
satisfy a time-window if necessary. In addition, as some resources can be reset 
to zero at these nodes and the extension of the off-duty time does not affect the 
reset resources, we can generate stricter rules. 
These dominance rules do not consider the impact of past decisions on the 

future values of ψm(t). If the rolling time window constraint is being considered, i 
then it is possible that labels that could generate optimal solutions will be 
removed and the final solution will be suboptimal. 

5.2.2 Choosing δi,∗ 

∗For each partial solution ending at an off-duty node vi , and at the origin, the 
variable cost δi,∗ of the outgoing arc has to be chosen. These variables affect 
the arrival time and elapsed time resources, so they also affect the feasibility 
of the downstream paths. These variables are continuous and their discretiza-
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tion might cause a great increase in the search space. In order to reduce the 
search space, we propose to generate a list of all time-window constrained nodes 
reachable within a tb hours drive and consider only the minimum δi,∗ needed to 
reach each one of these nodes within a valid time-window. The only reason to 
take a longer than necessary rest is to satisfy time-window constraints, therefore 
any increase of δi,∗ beyond these values would only increase the final solution 
cost. The list of nearby nodes can be generated offline during pre-processing 
and can be pruned online according to that partial solution’s resource vector, 
which affects the maximum allowed driving time. 

Conclusion and Recommendations 

This study extended the MIP models for the truck driver scheduling problem 
(TDSP), integrating information on the expected parking availability at each 
rest area and truck stop along the route, as well as extending the allowed plan-
ning horizon allowed by the model. In addition to proposing a way to model the 
weekly constraints from the USA HOS regulation, usually avoided in the liter-
ature, this study also presented a sufficient condition to check the optimality of 
a solution achieved using a simplified weekly constraint. 
A truck route going from San Diego to Seattle was used to the test the impact 

of the parking availability on the trip duration. Random availability windows 
were set to each parking location near the chosen route. The experiment results 
suggest that the integration of parking availability in the TDSP does not impact 
negatively the total trip duration. Historical truck parking availability data is 
needed in order to simulate more realistic scenarios before implementation is 
possible. Experiments with fictitious routes with varying lengths and number 
of parking locations were used to study the complexity of the model. The 
experiments revealed a scalability issue that can hinder the usage of the model 
in some cases. This can limit the number of parking locations that can be 
considered in long-trips, and also affect its usage to update the schedule in the 
middle of the trip when necessary. 
We also proposed a model for the vehicle shortest path and truck driver 

scheduling problem (VSPTDSP), which differs from the vehicle routing truck 
driver scheduling problem usually treated in the literature by focusing not on 
choosing the order in which to visit the customers, but on which path to take 
to reach the next customers, including the detours needed to reach available 
parking locations. The problem was formulated as a shortest path problem 
with resources constraints. Labels and dominance rules were proposed to be 
used in a label correcting approach to solve this problem. 
With the possibility of future implementation in mind, we consider as fu-

ture research directions to include time-dependent travel times in the TDSP 
model, to work on improving its scalability, and to further develop the proposed 
approach for the VSPTDSP. 
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7 Implementation 

The proposed model can be solved by MIP solvers like CPLEX, so interested 
companies could test it in practice. However, there are still some issues that need 
to be addressed before it can be implemented properly. The biggest obstacles 
for practical applications would be the acquisition of truck parking availability 
data and the lack of time-dependent travel times. 
The parking availability data could be obtained through partnerships with 

parking locations that already have this kind of data available. For this model, 
data on the times when the parking lots achieve capacity and when they become 
available again would be enough. The exact availability at each time of the day 
is not required. It would be advantageous for private truck stops to provide 
this information to trucking companies. When included in the route planning 
these parking locations could be assigned as the scheduled rest stops for certain 
trips, and receive preferential treatment from the drivers/companies using the 
system. 
The significance of time-dependent travel times may be lower for routes 

having travel times with smaller variances, but we are not aware of how often 
this is the case, and if this kind of route would also face parking shortages. This 
issue requires further research to extend the models and include time-dependent 
travel times. Another issue which requires further work is the scalability of the 
model. As the number of parking locations and trip length increase, the solve 
time increases exponentially. This planning is done off-line, so it is a less pressing 
issue, but it still significantly limits the number of parking locations that can 
be considered in long trips. In addition, it hinders the possibility of using the 
system to update the schedule during the trip when necessary. 
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